Dehydration-Induced Anorexia Reduces Astrocyte Density in the Rat Corpus Callosum

نویسندگان

  • Daniel Reyes-Haro
  • Francisco Emmanuel Labrada-Moncada
  • Ricardo Miledi
  • Ataúlfo Martínez-Torres
چکیده

Anorexia nervosa is an eating disorder associated with severe weight loss as a consequence of voluntary food intake avoidance. Animal models such as dehydration-induced anorexia (DIA) mimic core features of the disorder, including voluntary reduction in food intake, which compromises the supply of energy to the brain. Glial cells, the major population of nerve cells in the central nervous system, play a crucial role in supplying energy to the neurons. The corpus callosum (CC) is the largest white matter tract in mammals, and more than 99% of the cell somata correspond to glial cells in rodents. Whether glial cell density is altered in anorexia is unknown. Thus, the aim of this study was to estimate glial cell density in the three main regions of the CC (genu, body, and splenium) in a murine model of DIA. The astrocyte density was significantly reduced (~34%) for the DIA group in the body of the CC, whereas in the genu and the splenium no significant changes were observed. DIA and forced food restriction (FFR) also reduced the ratio of astrocytes to glial cells by 57.5% and 22%, respectively, in the body of CC. Thus, we conclude that DIA reduces astrocyte density only in the body of the rat CC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myelin enhancement of Multiple sclerosis model with gold nanoparticles into the corpus callosum

Objective(s): With no substantial cost, we injected L-arginine into the rat’s corpus callosum (CC) to create animal model of multiple sclerosis (MS) and investigated the pre-injection effect of gold nanoparticles (GNPs). Materials and Methods: Adult male Wistar rat (250-300 g) was surgically cannulated at the CC, and after recovery it was injected L-arginine (3-200 µg/rat, intra-CC) once ...

متن کامل

Protective effects of erythropoietin against cuprizone-induced oxidative stress and demyelination in the mouse corpus callosum

Objective(s): Increasing evidence in both experimental and clinical studies suggests that oxidative stress plays a major role in the pathogenesis of multiple sclerosis. The aim of the present work is to investigate the protective effects of erythropoietin against cuprizone-induced oxidative stress. Materials and Methods: Adult male C57BL/6J mice were fed a chow containing 0.2 % cuprizone for 6 ...

متن کامل

Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus

Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The...

متن کامل

Regional density of glial cells in the rat corpus callosum.

Axons and glial cells are the main components of white matter. The corpus callosum (CC) is the largest white matter tract in mammals; in rodents, 99% of the cells correspond to glia after postnatal day 5 (P5). The area of the CC varies through life and regional differences related to the number of axons have been previously described. Whether glial cell density varies accordingly is unknown; th...

متن کامل

Myelin Protection by Ursolic Acid in Cuprizone-Induced Demyelination in Mice

Neuronal survival in multiple sclerosis (MS) and other demyelinating diseases depends on the preservation of myelin and remyelination of axons. Myelin protection is the main purpose to decrease myelin damage in the central nervous system (CNS). Ursolic acid (UA) as a natural product in apple is suggested to protect neural cells. This study is the first to demonstrate an effect for UA on CNS mye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015